
The Conformational Analysis of Saturated Heterocycles. Part LIII.¹ Further 1,3,5-Trialkylhexahydro-1,3,5-triazines

By R. Philip Duke, Richard A. Y. Jones,* Alan R. Katritzky,* and Roger Scattergood, School of Chemical Sciences, University of East Anglia, Norwich NOR 88C

Frank G. Riddell, Department of Chemistry, University of Stirling, Scotland

The dipole moments of mixed isopropyl-t-butyl- and methyl-t-butyl-hexahydrotriazines allow the calculation of the conformational free energies of placing one or two N-alkyl groups axial in this system. The results are compared for those in other six-membered ring systems.

IN an earlier study 2 of hexahydro-1,3,5-triazines, we concluded that equilibria of type $(1) \Longrightarrow (2) \Longrightarrow (3)$ were involved, but that the proportion of triequatorial derivatives the diaxial conformer (3) could be neglected. The availability³ of unsymmetrically substituted trialkylhexahydrotriazines now allows a test of these con-

form (1) was small for the trimethyl and triethyl compounds, whereas for the tri-isopropyl and tri-t-butyl

Т	ABLE	1

Dielectric and specific volume measurements a at 25° in cvclohexane

	m oy cionenane	
10° w	$10^{6} (\epsilon_{12} - \epsilon_{1})$	$10^6 (v_1 - v_{12})$
1-Isopropyl-3,5-di-t-bi	utylhexahydro-1,3,	5-triazine

1-isopropyi-a,a-u-t-butymexanyuro-1,a,a-thazme					
1349	278.5				
2889	$623 \cdot 3$				
3973	840.8				
4079	877.8				
ylhexahydro-1,3,5	-triazine				
3654	719				
5140	1058				
6107	1235				
6977	1395				
1-Methyl-3,5-di-t-butylhexahydro-1,3,5-triazine					
2797	$628 \cdot 8$				
3171	$694 \cdot 6$				
4224	$922 \cdot 0$				
1,3-Dimethyl-5-t-butylhexahydro-1,3,5-triazine					
1793	320.8				
2496	$485 \cdot 1$				
2532	$493 \cdot 5$				
3160					
	1349 2889 3973 4079 ylhexahydro-1,3,5 3654 5140 6107 6977 nexahydro-1,3,5-tr 2797 3171 4224 nexahydro-1,3,5-tr 1793 2496 2532				

^a $w = \text{Weight fraction}, \epsilon_1 \text{ and } \epsilon_{12} \text{ are the dielectric constants}$ for solvent and solution respectively, and v_1 and v_{12} are the corresponding specific volumes.

clusions, and a more accurate determination of the equilibrium constants involved.

EXPERIMENTAL

Compounds .--- Preparative details will be published elsewhere.³

Dipole Moments.—These were measured at 25° in cyclohexane as previously described; ⁴ the results are recorded in Tables 1 and 2.

Calculations .- The dipole moments expected for the individual conformers were calculated using the optimised geometry for hexahydro-1,3,5-triazine,⁵ and the results are given in Table 3.

DISCUSSION

We made the following assumptions regarding the conformational equilibria. (a) The equilibrium constant $K_{3e} = \lfloor 2 \rfloor / \lfloor 1 \rfloor$ depends only on \mathbb{R}^1 and not on \mathbb{R}^2 or \mathbb{R}^3 . The corresponding free energy difference we depict as

¹ Part LII, R. P. Duke, R. A. Y. Jones, and A. R. Katritzky, Part LII, R. P. Duke, R. A. Y. Jones, and A. R. Katritzky, J.C.S. Perkin II, 1973, 1553.
R. A. Y. Jones, A. R. Katritzky, and M. Snarey, J. Chem. Soc. (B), 1970, 135.
F. G. Riddell, to be submitted to J.C.S. Perkin II.
L. Angiolini, R. P. Duke, R. A. Y. Jones, and A. R. Katritzky, J.C.S. Perkin II, 1972, 674.
I. D. Blackburne, R. P. Duke, R. A. Y. Jones, A. R. Katritzky, and K. A. F. Record, J.C.S Perkin II, 1973, 332.

TABLE 2

Measured dipole moments ^a

$\mathrm{d}\boldsymbol{\varepsilon}/\mathrm{d}\boldsymbol{w}$	$-\mathrm{d}v/\mathrm{d}w$	${}_{\mathbf{T}}P_{2^{\infty}}$	$_{\rm E}P$	μ/D
1-Isopropyl-3,5-di				
0.753 ± 0.008	0.163 ± 0.002	$112 \cdot 61$	74.41	1.37 ± 0.01
1,3-Di-isopropyl-5				

 0.749 ± 0.009 0.164 ± 0.0007 99.26 65.32 1.29 ± 0.01 1,3-Dimethyl-5-t-butylhexahydro-1,3,5-triazine

 0.876 ± 0.023 0.166 ± 0.005 84.87 51.70 1.27 ± 0.02

^a Errors quoted for $d\epsilon/dw$ and dv/dw are standard deviations based on the least-squares plot. These errors are combined to give the quoted error in μ .

TABLE 3

Calculated dipole moments (μ/D) for hexahydro-1,3,5-triazines

Compound	Bu ^t a	But ₂ Pi	i But-Pri2	Pr ⁱ s
Measured	$1 \cdot 45$	1.37	1.37	1.36
All eq	$2 \cdot 08$	$2 \cdot 08$	2.07	2.07
One Bu ^t ax	1.26	1.24	1.20	
One Pr ⁱ ax		1.34	1.32	$1 \cdot 29$
Two Pr ⁱ ax			0.76	0.67
Compound		Me ₃	Me ₂ Bu ^t	Me-But ₂
Measured		1.19	1.27	1.32
All eq		$2 \cdot 31$	$2 \cdot 24$	$2 \cdot 16$
One Me ax		1.44	1.40	1.36
One $Bu^t ax$			1.35	1.30
Two Me ax		0.74	0.70	

 ΔG^{0}_{3e} . (b) The equilibrium constant $K_{2a} = [3]/[2]$ depends on \mathbb{R}^{1} and \mathbb{R}^{2} but not on \mathbb{R}^{3} . The corresponding free energy difference we depict as ΔG^{0}_{2a} . (c) Conformers (3) with two axial groups are negligibly populated if either \mathbb{R}^{1} or \mathbb{R}^{2} is t-butyl.

Free Energy Differences ΔG^{0}_{3e} and ΔG^{0}_{2a} for t-Butyl and Isopropyl.—Recalculation of the previous ² result for the tri-t-butyltriazine using the revised geometry ⁵ gives $N(\operatorname{But}_{3} eq) = 0.188$; hence $K_{3e}(\operatorname{But}) = 4.32$ and $\Delta G^{0} = -0.87$ kcal mol⁻¹. Correcting for the higher entropy of the three-fold degenerate monoaxial-t-butyl compound gives $\Delta G^{0}_{3e}(\operatorname{But}) = -0.22$ kcal mol⁻¹. the di-isopropyl-t-butyl derivative we have equations (1)—(4).

$$N(\text{tri-}eq) = \frac{1}{1 + e^{(-a/0.59)} + 2e^{(-b/0.59)} + e^{[-(b+c)/0.59]}}$$
(1)

 $N(\operatorname{But} ax) =$

$$\frac{e^{(-a/0.59)}}{1 + e^{(-a/0.59)} + 2e^{(-b/0.59)} + e^{[-(b+c)/0.59]}}$$
(2)
N(Prⁱ ax) =

$$\frac{1}{1 + e^{(-a/0.59)} + 2e^{(-b/0.59)} + e^{[-(b+c)/0.59]}}$$
(3)
$$N(\Pr_{a}^{i} ax) =$$

 $2e^{(-b/0.59)}$

$$\frac{\mathrm{e}^{[-(b+c)/0.59]}}{1+\mathrm{e}^{(-a/0.59)}+2\mathrm{e}^{(-b/0.59)}+\mathrm{e}^{[-(b+c)/0.59]}}$$
(4)

These conformer populations may now be used with the calculated dipole moments of Table 3 to give ⁶ four equations connecting the expected dipole moment and the values a, b, and c. By trial and error the best fit (Table 4) was found using $\Delta G^{0}_{3e}(\operatorname{Bu}^{t}) = -0.3$, $\Delta G^{0}_{3e}(\operatorname{Pr}^{i}) = -1.0$, and $\Delta G^{0}_{2a}(\operatorname{Pr}^{i}) = -3.0$ kcal mol⁻¹.

TABLE 4

Conformer populations

	Mole fractions		Dipole moment			
Compound	Tri-eq	$\operatorname{But} ax$	Pr ⁱ ax	$Pr_{2}^{i}ax$	Calc.	Obs.
Tri-t-butyl	0.17	0.83			$1 \cdot 43$	1.45
Mono-isopropyl- di-t-butyl	0.10	0.34	0.56		1.40	1.37
Di-isopropyl- mono-t-butyl	0.07	0.12	0.80	<0.01	1.37	1.37
Tri-isopropyl	0.06		0.93	<0.01	1.34	1.36
	Tri-eq	$\operatorname{Me} ax$	$\operatorname{Me}_2 ax$	$\operatorname{But} ax$		
Trimethyl	< 0.01	0.58	0.42		$1 \cdot 20$	1.19
Dimethyl-mono- t-butyl	<0.01	0.73	0.26	<0.01	$1 \cdot 26$	1.27
Mono-methyl-di- t-butyl	0.01	0.93		0.05	1.37	$1 \cdot 32$

Free Energy Differences ΔG^{0}_{2e} and ΔG^{0}_{2a} for Methyl.— For the trimethyl, dimethyl-t-butyl, and methyl-di-tbutyl compounds, a treatment similar ⁶ to that used above gives three equations in the two unknowns, from

TABLE 5

Relative free energies (k	kcal mol ⁻¹) of axial	N-alkyl groups in th	he hexahydro-1,3,5-triazine	and related systems *

	, -		,	, -	5
System	Ref.	$\mathbf{Bu^t}$	Pri	Et	Me
Hexahydrotriazine ΔG_{2a}^{0}	a	≥4 ^b	3.0 ± 0.5	(0·8) °	$0.20~\pm~0.05$
Hexahydrotriazine ΔG_{3r}^{0}	a	-0.3 ± 0.1	-1.0 ± 0.1	$(-1.8)^{c}$	-2.5 ± 0.2
Hexahydropyrimidine	5	Large	≥ 1.5	0.6	0.4
Piperidine	5	Large	1.6	1.0	0.7
Cyclohexane d	е	ca. 5	$2 \cdot 1$	1.8	1.7
			1 1 1 0 111 1		NT T ALL C

^o This work. ^b Assumed value, see text. ^c Provisional, see text. ^e C-Alkyl groups. ^e E. L. Eliel, N. L. Allinger, S. J. Angyal, and C. A. Morrison, 'Conformational Analysis,' Interscience, New York, 1965, p. 44.

* In a previous paper (ref. 2) we used the opposite sign convention, but we believe that the present one $(\Delta G^0 = \Delta G^0_{ax} - \Delta G^0_{eq})$ is preferable.

For the isopropyl-di-t-butyl, di-isopropyl-t-butyl, and tri-isopropyl derivatives, the relative population of each conformer may be expressed in terms of $\Delta G^0_{3e}(\operatorname{But}^i) = a$, $\Delta G^0_{3e}(\operatorname{Pr}^i) = b$, and $\Delta G^0_{2a}(\operatorname{Pr}^i) = c$. For example, for

⁶ For a full discussion see R. Scattergood, Ph.D. Thesis, University of East Anglia, 1972. which the best values of $\Delta G^{0}_{3e}(\text{Me}) = -2.5$ and ΔG^{0}_{2a} -(Me) = 0.2 kcal mol⁻¹ were found (Table 4).

General Conclusions.—Free energy differences are summarised in Table 5: the values given for ethyl are tentative as they are derived from a measurement of the single triethyl compound only. The results show a smooth

1973

progression and confirm the previous ² semiquantitative conclusion that whereas for the t-butyl and isopropyl compound the equilibrium mixture contains mainly the triequatorial and monoaxial-diequatorial conformers, for the ethyl and methyl compounds the equilibrium is essentially between the monoaxial-diequatorial and diaxial-monoequatorial conformers. It is a little difficult to assess the errors in the reported ΔG^0 values because there is no simple relationship between the experimental dipole moments and ΔG^0 . The errors quoted are those which give rise to an approximate doubling of the least squares differences between observed and calculated moments (Table 4). Table 5 also gives conformational ΔG^0 values for related systems: it is easier to place N-alkyl axial in piperidine than C-alkyl in cyclohexane because of the ease of deformation at nitrogen. A further small increase is observed for N-alkyl in hexahydropyrimidine: here there is less hindrance to the axial alkyl group as one β -hydrogen atom is replaced by a lone pair. A dramatic decrease in ΔG^0_{3e} occurs for the hexahydro-1,3,5-triazines due both to decreased interaction in the N-alkyl axial conformer and to unfavourable interactions in the triequatorial conformer.

[3/747 Received, 9th April, 1973]